Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733165

RESUMO

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

2.
J Diabetes Res ; 2019: 7457295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944828

RESUMO

Wound healing is a perfectly coordinated cascade of cellular, molecular, and biochemical events which interact in tissue reconstitution. Chronic diseases such as pressure ulcers (PU) and diabetes mellitus (DM) are considered risk factors for wound healing. Patients with such diseases often have higher sepsis, infection, and complication rates, since they have revascularization inhibition and low growth factor expression. Thus, latex biomembrane (LBM), a biocompatible material, derived from the latex of the rubber tree (Hevea brasiliensis) appears to create tendencies as an angiogenic-inducing tissue healing agent and as biomaterial, resulting from its structural qualities and its low cost when compared to conventional treatments. Therefore, this work aims at summarizing the results, experiments, and scientific findings that certify or recommend the use of LBM as a new technique to be applied effectively in the treatment of wounds. An integrative review was held in the BIREME, LILACS, Burns, MEDLINE, PubMed, and SciELO databases, from 2000 to 2016, using the following descriptors: "healing," "diabetes mellitus," "wounds," and "latex membrane." As a result, 600 experiments (out of 612) presented satisfactory results; however, 33% of the cases received explicit recommendations, 11% required more studies on the subjects, and 1% was denied. On the other hand, half of the studies did not expressly endorse its use, despite presenting satisfactory results. The LBM was characterized as a good therapeutic alternative in cases of wounds, including chronic diseases, such as diabetes mellitus and PU, due to its relevant potential for wound healing stimulation, acceleration of cell tissue mending and revascularization, or the reestablishment of angiogenic functions (creation of new blood vessels). The LBM was also confirmed to be safe as a biocompatible material whose structural qualities (elasticity, adaptability, impermeability, and possibility of suture), devoid of toxicity, allowed interaction between tissues and presented no hypersensitivity inducer and no antimicrobial effect.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Pé Diabético/terapia , Úlcera do Pé/terapia , Hevea/química , Látex/uso terapêutico , Cicatrização , Animais , Produtos Biológicos/uso terapêutico , Órtoses do Pé , Humanos , Teste de Materiais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA